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Abstract. We study the domain morphology in a phase separated state of diblock copolymer–homopolymer
mixtures. In the situation that one of the blocks of copolymers is incompatible with homopolymers, for-
mation of a bilayer membrane of block copolymers is shown to be possible in the matrix of homopolymers.
Starting with the free energy functional in terms of the local volume fractions of each monomer, we derive
the bending and curvature rigidities in the Helfrich free energy for a membrane. It is found that the curva-
ture modulus is negative only in a limited region of the parameters, where a closed shape of a membrane
like a vesicle is possibly formed. We establish a method to calculate the rigidities without a molecular
picture in a consistent way with the field theoretic model free energy. Stability of a bilayer membrane
compared with micelles is also investigated.

PACS. 64.60.Cn Order-disorder transformations, statistical mechanics of model systems
– 68.10.Et Interface elasticity, viscosity, and viscoelasticity – 82.65.Fr Film and membrane processes:
ion exchange, dialysis, osmosis, electroosmosis

1 Introduction

A mixture of diblock copolymers and homopolymers ex-
hibits fascinating phase separation. When one of the
blocks is incompatible with homopolymers, the system un-
dergoes macrophase separation at low temperatures seg-
regating into copolymer–rich and homopolymer–rich do-
mains. If there is a repulsive short range interaction be-
tween two blocks, microphase separation takes place in
copolymer–rich domains. This double phase separation
has indeed been observed experimentally [1,2].

In most of experiments [3], homopolymer is chosen to
be chemically identical with one of the blocks and plays
a role of a selective solvent because these experiments are
motivated to study the influence of added homopolymers
on the stability of microphase separated structures of pure
copolymers. (See Ref. [4] for an exception.) Therefore the
homopolymer volume fraction is chosen to be rather small.
However, if the volume fraction of homopolymer is suffi-
ciently large, one may expect essentially new morpholo-
gies. For instance, Hashimoto et al. [2,5] have observed
onion–ring domains, assembly of rod–like domains. Vesi-
cles of copolymers in a homopolymer–rich matrix have
also been found recently [6,7]. These are not seen in a
microphase separation of pure copolymers.

There are substantial number of theoretical studies
of the equilibrium properties of copolymer–homopolymer
mixtures [8–10]. Equilibrium phase diagram for the dou-
ble phase separation has been obtained. In the case of
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small volume fraction of copolymers, Semenov investi-
gated the formation of bilayer membranes and micelles in a
homopolymer–rich matrix [11]. He considered a mixture
of A–B type diblock copolymer and A–homopolymer em-
ploying some of his earlier results for pure diblock copoly-
mers.

In a previous paper [12], Ito and one of the present
authors have introduced a model equation for A–B type
copolymer and C–homopolymer mixtures and have car-
ried out computer simulations to explore the morphology
and kinetics of domain growth in the course of the double
phase separation. Remarkable findings are that a morpho-
logical change occurs in the microphase separated state by
changing the interaction strength between B–blocks and
C–homopolymers or the molecular weight of the copoly-
mer and that the kinetics of domain coarsening is drasti-
cally affected by the morphology.

In the present paper, we shall investigate the equi-
librium property of A–B copolymer and C–homopolymer
mixtures based on the free energy functional introduced
in reference [12]. We focus our attention on formation,
stability and elasticity of bilayer membrane of copoly-
mers. We assume that both polymer chains are flexible
and there is a repulsive interaction between B–blocks and
C-homopolymers as well as between A and B blocks. Thus
one may expect a bilayer such that A blocks contact with
C homopolymers at a sharp interface while the B blocks
are in the middle part of the layer as shown in Figure 1a.



58 The European Physical Journal B

(b)

B
A

A

C

C

ABA
C

C

(a)

Fig. 1. (a) A bilayer membrane
with B–domain in the middle and A–
domains in the outer sides. (b) A “per-
pendicular morphology” of A and B
domains in a copolymer–rich domain.

It is noted that the copolymer–homopolymer system
considered here has a striking similarity with a water–
surfactant system where a polar head of a surfactant
molecule is attractive with water while a nonpolar tail
is repulsive with water. As a result, micelles and bilayers
of surfactant molecules are constituted in the water–rich
matrix for suitable volume fractions of surfactants and
temperature [13,14].

The elastic property of a membrane in the limit of an
infinitesimally thin width is characterized by the Helfrich
free energy density [15]

Fmem = σ + 2κH2 + κ̄K (1)

where σ is an interfacial energy. The mean curvature H
and the Gaussian curvatureK are defined, respectively, by
H = (1/R1 + 1/R2)/2 and K = 1/(R1R2) with the prin-
cipal radii of curvatures R1 and R2. Our main concern is
to derive the bending modulus κ and the curvature mod-
ulus κ̄ as a function of the block ratio f = NA/(NA +NB)
with NA (NB) the molecular weight of the A (B) block.
We assume that both copolymer and homopolymer are
monodisperse. Note that the spontaneous curvature is ab-
sent, by symmetry, in a copolymer bilayer [16,17]. In the
case of surfactant mixtures, this is not generally the case
[18].

Ajdari and Leibler [16] and Wang [17] have studied
independently the elastic property of a bilayer membrane
in A–B copolymer and A homopolymer mixtures. These
authors have employed the method of the grafted chain
picture which was introduced for a monolayer membrane
[19,20]. In the Ajdari–Leibler theory [16], the free energy
of a membrane has been defined per unit area. On the
other hand, Wang [17] has used the free energy per chain
allowing the change of the number of copolymer molecules
in a membrane upon bending [21].

Our approach is a density functional method in terms
of the local volume fractions of monomers [22]. Since the
model is not specific to polymeric systems, the present
theory to derive the Helfrich free energy has a wider ap-
plicability. In the present paper we assume that the num-
ber of copolymer chains is unchanged for a gently curved
membrane. However, the theory can be extended, without
any difficulty, to the case considered by Wang.

A bilayer membrane contains three characteristic
lengths, the interface width ξ, the membrane width w
and the typical radius of curvature R. The Helfrich free

energy density (1) is defined in the limit ξ � w � R.
As mentioned above, we assume that ξ is infinitesimal in
the strong segregation limit. Since a bilayer has an in-
ternal structure we have to keep w finite in the calcula-
tion of the membrane free energy and then take a limit
w/R→ 0. However there is a conceptual problem how to
choose uniquely the radius of curvature due to the finite-
ness of w. In other words, we need to make a unique reduc-
tion of degrees of freedom associated with three domains
as in Figure 1a to obtain (1) which is expressed only in
terms of one degree of freedom.

In the previous studies of a monolayer membrane
[19,20] and a bilayer membrane [16], the membrane free
energy is defined per area of copolymer chain so that ex-
pressions of the rigidity moduli independent of the choice
of curvature are obtained. One could also define the free
energy per chain in the present theory. However, since our
model is field theoretic, relying on the chain picture is not
internally consistent. Furthermore, formation of bilayer is
not necessarily restricted to polymeric materials. Hence
one needs to establish a method of deriving the Helfrich
free energy without using the chain degrees of freedom.
We shall provide an answer to this problem.

Since a copolymer–homopolymer mixture contains a
fairly large number of parameters, we specify the condi-
tions in the present study. We consider the strong segrega-
tion limit for both micro– and macro–phase separations.
This means that the interfacial width is much smaller than
the bilayer thickness. The molecular weight of homopoly-
mers is large enough so that the homopolymers cannot en-
ter into the A–rich domains. In other words, we assume a
dry brush of A–blocks. The repulsive interaction between
the B–blocks and the C–homopolymers is assumed to be
sufficiently strong so that there is always an A–domain
between B–and C–domains. This condition excludes the
possibility of a “perpendicular morphology” of domains
as in Figure 1b. Finally we do not consider, for simplicity,
the interaction between bilayers and/or micelles.

The organization of the paper is as follows: in
Section 2, we explain our free energy functional. The free
energy of a bilayer with a cylindrical geometry is calcu-
lated in Section 3 whereas that of a spherical vesicle is
given in Section 4. In Section 5, we evaluate the elas-
tic rigidities in the Helfrich Hamiltonian as a function
of the block ratio and the interfacial energies between A
blocks and C homopolymers as well as A and B blocks.
The results are compared with those obtained by Ajdari
and Leibler [16]. In Section 6, we examine the free energy
increase for weak deformations around a flat bilayer mem-
brane. Comparing this with those of cylindrical and spher-
ical vesicles, we show how to identify the elastic moduli
uniquely without the molecular picture. When the block
ratio is close to unity, formation of micelles with a core of
B blocks is not excluded. Therefore we examine, in Sec-
tion 7, the relative stability of a flat bilayer compared with
spherical and worm–like (cylindrical) micelles. The results
obtained are discussed in Section 8. Some technical details
used in Sections 3 and 4 are summarized in the Appendix.
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2 Model free energy

We start with the free energy functional for a mixture
of A–B diblock copolymers and C homopolymers, which
is written in terms of the local volume fractions φA(r),
φB(r) and φC(r). One of the most important properties of
a copolymer system is the osmotic incompressibility due
to chain connectivity. This gives rise to a Coulomb type
long range interaction between the local volume fractions
[22]. Thus the free energy functional consists of two parts:

F = FS + FL. (2)

The short range part FS takes the following form

FS =

∫
dr

{
1

2
(∇φA)2+

1

2
(∇φB)2 +

1

2
(∇φC)2+W (φ)

}
.

(3)

The local part W (φ) is modeled, for instance, by a Flory–
Huggins form

W (φ) =
∑

i=A,B,C

φi

Ni
lnφi +

1

2

∑
i,j

uijφiφj

− µ(φA + φB − φC) (4)

where Ni (i = A, B, C) is the molecular weight of an
i–polymer and uij is the interaction constant between i
and j polymers. The constant µ in the last term stands for
the chemical potential difference between the copolymer
and the homopolymer. Since we are not concerned with
macrophase separation, hereafter we will not consider the
last term in (4).

Equation (4) is valid for ternary blends and an ap-
proximation for copolymers [23]. When the repulsive in-
teraction between A blocks and C homopolymers is weak,
or the molecular weight of the homopolymer is not suffi-
ciently large, the local volume fraction changes gradually
in each domain. In this case the concentration profile de-
pends explicitly on the short range part of the free en-
ergy. However, we consider the strong segregation limit
where the local volume fractions are assumed to take a
step-function form at the interfaces. In this situation we
believe that the results obtained below are insensitive to
the form of the local interactionW (φ) and the short range
part FS.

The long range part FL is given by

FL =
1

2

∑
i,j=A,B

αij

∫
dr

∫
dr′ G(r, r′) {φi(r)− φ̄i}

× {φj(r
′)− φ̄j} (5)

where

−∇2G(r, r′) = δ(r− r′) (6)

and φ̄i is the spatial average of φi. The coupling con-
stants αij are given by αAA = 6/N2

A, αBB = 6/N2
B and

αAB = αBA = −6/(NANB). The Kuhn statistical length

of both copolymer and homopolymer has been put to be
unity. The form of FL can be obtained from a microscopic
model such as the Edwards Hamiltonian for copolymer–
homopolymer mixtures and using the random phase ap-
proximation by generalizing the method in reference [22]
to copolymer–homopolymer mixtures. In deriving FL, we
have used the incompressibility φA(r)+φB(r)+φC(r) = 1
to eliminate φC(r).

Note that the 2 × 2 matrix αij has a zero eigenvalue,
which is associated with macrophase separation, so that
FL becomes simpler after diagonalizing the matrix αij .

FL =
α

2

∫
dr

∫
dr′ G(r, r′)φ′(r)φ′(r′) (7)

where φ′ and α are given, respectively, by

φ′ =
1√

N2
A +N2

B

(NBφA −NAφB) (8)

α =αAA + αBB. (9)

Note here that φ̄′ = 0 which is called a neutrality condition
is automatically satisfied since NBφ̄A−NAφ̄B ∝ N(NBf−
NA(1 − f)) = 0 with N = NA + NB. The eigen function
of the zero mode is given by

ψ′ =
1√

N2
A +N2

B

(NAφA +NBφB). (10)

In the strong segregation limit, φi is equal to either 0 or
1. Therefore the value of φ′ is given in an A domain by

φ′ ≡ A =
NB√

N2
A +N2

B

(11)

and in a B domain by

φ′ ≡ −B = −
NA√

N2
A +N2

B

· (12)

In C domains, φ′ is identically equal to zero in the strong
segregation limit.

Our aim is to investigate the existence and the stability
of a bilayer membrane in a homopolymer–rich matrix. In
the next two sections, we calculate the long range part of
the free energy of a vesicle in two and three dimensions
starting with (7).

Before closing this section we make a remark about the
free energy (7). Since the chain conformation is averaged
out, the theory contains less information of each chain
compared with other theories specific to polymeric sys-
tems. The characteristic feature of copolymers appears in
the Coulomb type repulsive interaction due to the osmotic
incompressibility. Thus although the theory may be less
accurate for copolymers in the above sense, it does provide
us with a fundamental and universal mechanism for mod-
ulated structures. In fact, the Coulomb type long range in-
teraction predicts microphase separation in charged mix-
tures [24–26]. Actually competition of a long range repul-
sive interaction and a short range attractive interaction in
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Fig. 2. A vesicle formed by a copolymer bilayer. The regions
between r1 and r2 as well as r3 and r4 are A–rich domains
whereas the middle region between r2 and r3 is the B–rich
domain.

the Ginzburg–Landau free energy is the origin of modu-
lated phases in various systems although the precise form
of the long range interaction depends on the system con-
sidered [27]. It should also be mentioned that our theory
can be easily extended to dynamics as has already been
demonstrated [12,28].

3 Free energy of a cylindrical vesicle

In order to evaluate the rigidities κ and κ̄ in the Helfrich
Hamiltonian (1), one needs to calculate the long range
part of the free energy (7) for cylindrical and spherical
vesicles with a given radius. In this section, we carry out
such a calculation for a cylindrical case. By a vesicle, we
mean a closed membrane, the inside and the outside of
which are in the homopolymer–rich phase.

Suppose that a bilayer takes a cylindrical form as
shown in Figure 2 where φ′(r) is a function of the dis-
tance r from the center and is given by

φ′ = A for r1 < r < r2 and r3 < r < r4

= −B for r2 < r < r3. (13)

The neutrality condition φ̄′ = 0 requires

A(r2
2 − r

2
1) +A(r2

4 − r
2
3) = B(r2

3 − r
2
2). (14)

The free energy (7) can be evaluated by using the analogy
of the electro–static theory. In terms of a potential V (r),
equation (7) is written in two dimensions as

F2d = πα

∫ ∞
0

dr rφ′(r)V (r) (15)

where V (r) is defined by

dV (r)

dr
= −E(r). (16)

The “electric” field E is readily obtained for the “charge”
distribution as in Figure 2 by using the Gauss theorem

E(r) =
A

2r
(r2 − r2

1) for r1 < r < r2 (17)

E(r) =
1

2r

{
−Br2 + (A+B)r2

2 −Ar
2
1

}
for r2 < r < r3 (18)

and

E(r) =
A

2r
(r2 − r2

4) for r3 < r < r4. (19)

We have used the neutrality condition (14) in the deriva-
tion of (19).

Solving (16) by taking account of the continuity of
V (r) at r = ri (i = 1, ..., 4) and substituting V (r) thus
obtained into (15), we have after lengthy but straightfor-
ward calculations

F2d =
πα

4

{
A2

4
(r4

1 − r
4
4) +

A2 −B2

4
(r4

3 − r
4
2)

+A2

(
r4
1 ln

r2

r1
+ r4

4 ln
r4

r3

)
+ [(A+B)r2

2 −Ar
2
1][(A+B)r2

3 −Ar
2
4] ln

r3

r2

}
·

(20)

In this derivation we have again used (14).
Next we expand (20) in powers of the radius of a vesi-

cle. For this purpose, we put

r4 = R+ cε+ a

r3 = R+ ε

r2 = R− ε

r1 = R− cε− b (21)

where R is the distance from the center of the vesicle to
the middle of the B layer and 2ε stands for the width of
the B layer. The constant c is defined by

c = 1 +
B

A
=

1

1− f
· (22)

The unknown constants a and b, which vanish in the limit
R → ∞, are to be determined as a function of R and ε.
The width w of the bilayer is given by

w = r4 − r1 = 2cε+ a+ b. (23)

The smallness parameter of the system is w/R. The equi-
librium value of the width w will be determined by mini-
mization of the total free energy of a membrane.

Since the system is in the strong segregation limit, we
may impose the condition for the layer positions ri such
that the area of the outer A layer in Figure 2 is the same
as that of the inner A layer

r2
4 − r

2
3 = r2

2 − r
2
1. (24)
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It is readily found from (14, 24) that the unknown con-
stant a satisfies

a2 + 2a(R+ cε) + (c2 − 1)ε2 = 0, (25)

the solution of which can be obtained perturbatively

a =−
c2 − 1

2R
ε2 +

c(c2 − 1)

2R2
ε3 −

(c2 − 1)(5c2 − 1)

8R3
ε4

+
c(c2 − 1)(7c2 − 3)

8R4
ε5 +O(ε6). (26)

The other constant b is also given by (26) by replacing R
by −R. Thus one obtains for a cylindrical vesicle

a+ b =
c(c2−1)

R2
ε3+

c(c2−1)(7c2−3)

4R4
ε5 +O(ε7) (27)

a− b =−
c2−1

R
ε2−

(c2−1)(5c2−1)

4R3
ε4 +O(ε6). (28)

By using the above results, the free energy (20) can be
expanded in powers of ε/R. Some of the details are sum-
marized in the Appendix. The final result up to O(R−1)
is given by

F2d =2πRαA2

{
c(c−1)2

3
ε3+

c

15
(c−1)2(2c2+4c+1)

ε5

R2

}
,

(29)

where the first term is a part of the interfacial energy of
a flat membrane whereas the second term is a correction
due to the curvature. Note that F2d has been obtained
from the long range part of the free energy (7).

4 Free energy of a spherical vesicle

The long range part of the free energy (7) can also be
evaluated for a spherical vesicle in a way similar to that
in Section 3. The spatial variation of the local volume frac-
tion φ′ is assumed to be the same as (13) where, however,
r is the radial distance from the center of the sphere. The
neutrality condition reads

A(r3
2 − r

3
1) +A(r3

4 − r
3
3) = B(r3

3 − r
3
2). (30)

The “electric” field E is given in this case by

E(r)=
A

3

(
r −

r3
1

r2

)
for r1 < r < r2 (31)

E(r)=
A

3

(
r3
2−r

3
1

r2

)
−

B

3

(
r−

r3
2

r2

)
for r2 < r < r3 (32)

and

E(r) =
A

3

(
r −

r3
4

r2

)
for r3 < r < r4. (33)

In the last expression (33), the neutrality condition (30)
has been used. Integrating (31) ∼ (33) to evaluate the

potential V (r) defined by (16) and using (30), one obtains
the free energy of a spherical vesicle

F3d = 2πα

∫ ∞
0

dr r2V (r)φ′(r)

= 2πα

{
A2

5
(r5

1 − r
5
4) +

(A2 −B2)

5
(r5

3 − r
5
2)

+
A(A+B)

3
[r2

2(r3
2 − r

3
1) + r2

3(r3
4 − r

3
3)]

}
· (34)

As in Section 3, one may impose the requirement that the
two A domains in a bilayer have the same volume

r3
4 − r

3
3 = r3

2 − r
3
1. (35)

Now we expand (34) in powers of ε/R by putting ri (i = 1,
..., 4) as (21). The correction a is given from (30, 35) by

a=−
c2−1

R
ε2+

5c(c2−1)

3R2
ε3−

(10c2−3)(c2−1)

3R3
ε4

+
(c2−1)(22c3−13c)

3R4
ε5+O

(
ε6

R5

)
· (36)

The other correction b is given by (36) after replacing R
by −R. Thus one obtains up to the leading order

a+ b =
10c(c2 − 1)

3R2
ε3 +

2(c2 − 1)(22c3 − 13c)

3R4
ε5 (37)

a− b = −
2(c2 − 1)

R
ε2 −

2(10c2 − 3)(c2 − 1)

3R3
ε4. (38)

Substituting (21) into (34) and using (36) ∼ (38), one
obtains after some manipulations (see Appendix.)

F3d =4πR2αA2

{
c(c−1)2

3
ε3+

c

15
(c−1)2 (7c2+14c+6)

ε5

R2

}
·

(39)

The first term in the curly brackets is the same as that
in (29), which gives us a contribution to the interfacial
tension of a flat bilayer membrane.

The vesicle free energies (29, 39) agree with those for
f = 1/2 (c = 2) calculated previously [29]. We have ver-
ified the results (29, 39) by an independent calculation
starting with (5) without diagonalization of the coefficient
matrix αi,j .

5 Elasticity of a bilayer membrane

The results (29, 39) have been obtained by a particular
choice of the radius R. Since the membrane width w is
finite and the second and third terms in (1) are order of
(w/R)2, the moduli κ and κ̄ in the Helfrich Hamiltonian
(1) generally depend on the choice of the radius. In order
to eliminate this ambiguity, we consider chain conforma-
tion constituting the bilayer. An alternative method will
be presented in the next section.
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The most convenient way is to define the free energy
per area Σ occupied by a pair of copolymer molecules as
shown in Figure 3. For this purpose, we rewrite the free
energy as

F ′mem =Σ

(
σ0ε

3+
σ2ε

5

R2

)
+(Σ4+Σ1)σAC+(Σ3+Σ2)σAB

(40)

where we have from (29, 39)

σ0 =
αA2

3
c(c− 1)2. (41)

Note that F ′mem is a free energy per chain in a membrane
and is different from Fmem in (1) defined per area. The
correction σ2 is given in two dimensions by

σ2 = αA2 c

15
(c− 1)2(2c2 + 4c+ 1) (42)

and in three dimensions by

σ2 = αA2 c

15
(c− 1)2(7c2 + 14c+ 6). (43)

In (40) we have added the contribution from the interfa-
cial energies σij for an interface between i and j domains.
These come from the short range part FS of the free en-
ergy. The area Σ and Σi (i = 1 ∼ 4) are related to the
solid angle Ω per chain as

Ω =
Σ4

rd−1
4

=
Σ3

rd−1
3

=
Σ

Rd−1
=

Σ2

rd−1
2

=
Σ1

rd−1
1

(44)

where d = 2 for a cylinder and d = 3 for a sphere. The
solid angle is, in turn, written in terms of NB as

Ω =
2dNB

rd3 − r
d
2

· (45)

A similar relation holds also in terms of NA. Note that the
volume occupied by a monomer has been put to be unity.

By using the above relations (44, 45), the membrane
free energy in two dimensions can be written as

F ′mem =NB

{
σ0ε

2+
σ2ε

4

R2
+

2

ε
(σAC+σAB)−

σAC

R2
(c2−1)ε

}
·

(46)

The unknown parameter ε, which is related with the width
w as w = 2cε for a flat membrane is determined by mini-
mization of F ′mem with respect to ε so that one obtains

ε∗ =

(
σT

σ0

)1/3

(47)

with σT = σAC+σAB. Note that the O(R−2) corrections in
(46) do not influence the equilibrium value. Substituting
this into (46) yields

F ′mem =
NB

ε∗

{
σ

eff
+

(
2c2+4c+1

60c2
−
σAC

12σT

c2−1

c2

)
σ

eff
w∗2

R2

}
(48)

where

σeff = 6cε∗σT/w
∗ = 3σT. (49)

Note that the higher order difference of order of 1/R2 be-
tween w and 2cε does not contribute to (48). We have fac-
tored out (NB/ε

∗) which is the area occupied by a copoly-
mer chain in the flat bilayer. Note that the Kuhn statisti-
cal length has been put to be unity. Therefore the part in
the curly brackets is the membrane free energy per area.

The membrane free energy in three dimensions can be
obtained similarly. From (40) one obtains

F ′mem = NB

{
σ0ε

2 −
σ0ε

4

3R2
+
σ2ε

4

R2
+

2

ε
σT

+ 2σAC

(
2ε

3R2
−

(c2 − 1)ε

R2

)
+

4σABε

3R2

}
· (50)

Minimization with respect to ε gives us the same equilib-
rium value as (47) and the free energy is given by

F ′mem =
NB

ε∗

{
σ

eff
+

(
7c2+14c+11

60c2
−
σ

AC

6σ
T

c2−1

c2

)
σeffw

∗2

R2

}
·

(51)

Comparing the terms in the curly brackets of (48, 51) with
(1) by putting R1 = R and R2 = ∞ in two dimensions
and R1 = R2 = R in three dimensions, we finally obtain
the elastic rigidities as

κ =

{
f2 − 6f + 7

30
−
σAC

6σT
f(2− f)

}
σeffw

∗2 (52)

κ̄ =

{
7f2 − 12f + 4

60
+
σAC

6σT
f(2− f)

}
σeffw

∗2 (53)

where we have used 1−f = 1/c. These are the main results
in the present paper.
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A remark is now in order. We have considered only the
interfacial energies and the long range part FL of the free
energy for a vesicle in (46, 50). However, the local part of
the free energy (4) generally produces another contribu-
tion proportional to the volume of a vesicle. Here we will
show that this bulk energy does not enter into the above
results. First of all, the first term of (4) can be ignored
in the bulk contribution since φi is equal either to 0 or
1 in the strong segregation limit. Thus we may consider
only the second term of (4). Putting φA = 1 in the A–
domains and φB = 1 in the B–domain, the local part (4)
gives rise to the free energy of a vesicle per area occupied
by a molecule as

Fbulk =
Ω

d
[uAA(rd4 − r

d
1)− (uAA − uBB)(rd3 − r

d
2)] (54)

where d = 2 for a cylindrical vesicle and d = 3 for a
spherical vesicle. Using the relations (45) and the neutral-
ity conditions (14, 30), one obtains

Fbulk = 2NB[cuAA − uAA + uBB]. (55)

As is expected, (55) is independent of the radius R so that
it does not contribute to the elastic moduli in the Helfrich
free energy.

Now we discuss the properties of the elastic rigidities
κ and κ̄. First we consider the case σAC = 0 in (52, 53).
Equation (52) shows that the bending rigidity κ is al-
ways positive. On the other hand, the curvature rigidity
κ̄ changes its sign by changing the block ratio f . That
is, when f > fc = (6 − 2

√
2)/7 = 0.453, κ̄ is negative,

whereas if f < fc, it turns out to be positive.
Since w∗ ∼ N2/3 and σeff ∼ N0, the rigidities have an

N4/3–dependence. This is not altered when σAC 6= 0. Note
also that both w∗ and σeff are independent of f provided
that σAC and σAB are f–independent.

The results (52, 53) with σAC = 0 should be compared
with those obtained by Ajdari and Leibler [16]:

κAL =
8

35/3
f(1− f)N4/3Γ 5/3 (56)

κ̄AL =
2

35/3

{
3(1− f)2 − 1

}
N4/3Γ 5/3 (57)

where Γ is an interfacial tension. Note that f in reference
[16] has been replaced by 1 − f in the above expressions
since the relative molecular weight of B block incompatible
with the homopolymer is defined as f in reference [16].

First of all, κ̄AL in (57) changes the sign at f = 1 −
1/
√

3 = 0.423. This is qualitatively consistent with (53).
The moduli (56, 57) exhibit N4/3 dependence supposing
that Γ is N-independent, which is also consistent with our
result. However, the f–dependence of κ is quite different
although both theories give us positive bending rigidity for
finite values of f . In the present result (52), the bending
modulus is asymmetric with respect to f = 1/2 while (56)
is invariant under the replacement of f by 1− f . Because
no detailed explanation is given in reference [16] about the
interaction between the two monolayers, the origin of this
discrepancy is unclear for us. In our opinion, there must

> 0

κ

κ

κ

κ

> 0

< 0

> 0

σ
σ

AC

T

< 0κ κ> 0
0.5 1

f
0

0.5

1

Fig. 4. The sign of κ and κ̄ on the σAC/σT–f plane. The
dotted line is a line where 2κ+ κ̄ = 0. Below the broken line a
bilayer is unstable in comparison with micelles.
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be the asymmetry of the system since A block is always
outside the layer whereas B block is inside the layer.

When σAC is finite, the stability of a bilayer membrane
is substantially altered. The sign of the rigidities is shown
on the σAC–f plane in Figure 4. As can be seen from
(52, 53), the interfacial energy between A block and C
homopolymer tends to decrease κ and to increase κ̄. For
instance, when σAC/σT = 1/2, κ becomes negative for
f > 0.89 and κ̄ is positive in the entire interval 0 < f < 1.

When κ is negative, a flat membrane is unstable for
undulation. To stabilize the short wavelength deformation,
one has to introduce higher order gradient terms in the
Helfrich free energy. The region where 2κ+ κ̄ is negative
appears only at the upper–right corner in Figure 4 as is
indicated by the dotted line.

The reason why the bending rigidity κ becomes small
by increasing σAC is as follows. If the membrane bends
as shown in Figure 5, the width of the outer A domain
decreases whereas that of the innner A domain increases
due to mass conservation. Therefore the average radius
of curvature of the two AC interfaces becomes smaller
than R. This makes the free energy lower and amount
of the reduction is proportional to σAC. Consequently the
membrane becomes softer as σAC is increased.

The curvature rigidity κ̄ increases by increasing σAC.
The two AC interfaces tend to contract when σAC is large,
which causes a conflict between these two interfaces. To
accommodate it, the membrane tends to deform with a
negative curvature.



64 The European Physical Journal B

Z

C
1

B

AZ

Z

4

Z3

2

Z

C

A

S0

Fig. 6. Weakly deformed membrane.

A similar situation occurs when one decreases f for
σAC = 0. For smaller values of f , B block occupies larger
volume compared with A block so that the membrane
tends to take a concave deformation. As a result, the cur-
vature modulus becomes positive for small values of f [16].

When f is larger than fc and σAC is small, κ̄ is nega-
tive, which is favorable for a vesicle formation. However,
as will be shown in Section 7, a bilayer membrane is unsta-
ble compared with micelles in the parameter region below
the broken line in Figure 4. Hence formation of a vesicle
is very limited in the σAC–f plane.

6 Deformation of a flat membrane

In Section 5, we have derived the bending and curvature
moduli κ and κ̄ in the Helfrich free energy. In order to
obtain these expressions independent of the choice of the
radius R, we have employed the picture of polymer chain
conformation. However, the starting model free energy (2)
is not represented in terms of the chain conformation. In
fact, (2) is not restricted to copolymer systems but is ap-
plicable to other mesophases. Therefore one needs to de-
velop a theory to derive the Helfrich free energy for a
bilayer without using the chain picture.

In this section we will show an alternative method to
evaluate κ and κ̄. Let us consider a slightly deformed mem-
brane as shown in Figure 6. The deformation of each in-
terface is represented by

z1 = −cε+ h(1)(x, y)

z2 = −ε+ h(2)(x, y)

z3 = ε+ h(3)(x, y)

z4 = cε+ h(4)(x, y). (58)

One needs to express the long range part of the free energy
(7) in terms of h(i) (i =1,...4). By introducing the Fourier
transform

φ′q =

∫
φ′(r)eiq·rdr (59)

one obtains

FL =
α

2

∫
dq

(2π)3

1

q2
φ′qφ

′
−q. (60)

Since φ′ = A and φ′ = −B in A-rich and B-rich domains,
respectively, the Fourier component can be written as

φ′q =

∫
ds eip·s

1

iqz
[A(eiqzz2 − eiqzz1)

−B(eiqzz3 − eiqzz2) +A(eiqzz4 − eiqzz3)] (61)

where s and p are two–dimensional vectors within a layer
defined such that q = (p, qz) and r = (s, z).

Substituting (58) into (60) with (61) and expanding it
in powers of h(i), one obtains up to the bilinear order

FL =
α

2

∑
i,j

∫
dp

(2π)2
[Dij(p) + 2Ci]h

(i)
p h

(j)
−p (62)

where the zeroth order term has been omitted. The Fourier
component h

(i)
p is defined in a way similar to (59) in a two-

dimensional space. After carrying out the integral over qz ,
the coefficients are given by

D11 = D44 =
A2

2p
, D22 = D33 =

A2c2

2p
,

D12 = D34 = D21 = D43 = −
A2c

2p
e−ε(c−1)p,

D13 = D24 = D31 = D42 =
A2c

2p
e−ε(c+1)p,

D14 = D41 = −
A2

2p
e−2εcp, D23 =D32 =−

A2c2

2p
e−2εp (63)

and

C1 = C4 = 0,

C2 = C3 = −
AB

2
cε = −

A2

2
c(c− 1)ε. (64)

In the derivation of (64), we have used the formula∫ ∞
0

dx
1

x2
sin ax sin bx =

π

2
a (65)

for 0 < a < b. By taking account of the interfacial energies,
the total free energy of a deformed membrane is given by

Fm = σAC

∫
dr[(1 + (∇h(1))2)1/2 + (1 + (∇h(4))2)1/2]

+σAB

∫
dr[(1+(∇h(2))2)1/2+(1+(∇h(3))2)1/2]+FL.

(66)

Now we have to compare (66) with the Helfrich free energy
(1) to identify the elastic moduli. The Helfrich free energy
for an infinitesimally thin membrane ignores any internal
structure. On the other hand, (66) contains four degrees of
freedom. Therefore one has to make a reduction to express



T. Ohta and M. Nonomura: Bilayer membrane 65

it in terms only of one independent variable. First of all,
we may put h(1) = h(4) and h(2) = h(3) ≡ h by symmetry.
It is easily found that the simplest choice h(1) = h(4) = h
does not give us the results equivalent with (52, 53). This
implies that h(1) and h(4) must have a correction term:

h(1) = h(4) = h+ g. (67)

In order to determine the correction g, we note from (58)
that

z4 + z1 = 2h+ 2g. (68)

This should be compared with

r4 + r1 − 2R = −
c2 − 1

R
ε2 +O

(
1

R2

)
(69)

which is obtained from (21, 28) for a cylindrical vesicle.

Since ∇2h = −1/R for h(x) =
√
R2 − x2 ≈ R − x2/(2R),

(68) is consistent with (69) if and only if one chooses

g =
c2 − 1

2
ε2∇2h. (70)

It is easily verified that one can arrive at the same con-
clusion as (70) for a spherical vesicle by using (38) and
putting h(x, y) = R− (x2 + y2)/(2R).

Substituting h(2) = h(3) = h and (67) with (70) into
(66) yields up to the fourth order of the gradient expansion

Fm =

∫
dp

(2π)2

[αA2ε5

15
c(c− 1)2(2c2 + 4c+ 1)

− σACε
2(c2 − 1)

]
p4hph−p (71)

where the p2 term vanishes identically due to the equi-
librium condition for the domain width. Since p4hph−p

corresponds to 1/R2 and 3σTw
∗2 = 12c2ε5σ0, the factor

in the bracket in (71) precisely agrees with (48) for a cylin-
drical vesicle and hence with the bending modulus κ as in
(52). Once the rigidity κ is identified, the other modulus
κ̄ can be extracted from the free energy for a spherical
vesicle (39) as has already been demonstrated from (51)
to (53).

It is remarked that the direct comparison of (71) with
(51) is not correct to identify 2κ+ κ̄. Note that (71) is for
an open membrane while (51) is for a closed membrane
and hence these structures have a different Euler number.

It is mentioned here that one can examine the lin-
ear stability of a membrane for a peristaltic deformation
putting h(1) = h(2) = −h(3) = −h(4). The bilayer mem-
brane is found to be linearly stable against this mode.
However, this fact does not guarantee the stability of
membrane compared with other morphology such as mi-
celles. We will address this question in Section 7.

To summarize, in order to derive the Helfrich free en-
ergy for a bilayer membrane, one has to evaluate the free
energy for three different configurations, i.e., cylindrical
and spherical forms and a membrane deformed around a
flat configuration. By taking into account the correction

B

C

A

Fig. 7. Micelle with the core of B–
blocks and the corona of A–blocks.

for the interface position due to the finite radius of curva-
ture as (68, 69), one can determine the elastic rigidities.
It should be noted that the term with σAC in (71) can-
not be obtained only from the free energy for a cylindrical
geometry.

We emphasize that the theory shown here is free from
the molecular picture employed in the previous study [16]
and provides us with a general procedure to derive the
elastic moduli for bilayer membrane starting with a field
theoretic model like (2).

7 Formation of micelles

In the previous three sections, we have studied the elas-
tic property of a bilayer membrane. However, one can-
not exclude other configurations of block copolymers in
a homopolymer matrix. For instance, it is possible that
spherical micelles with a core of B blocks surrounded by
A blocks are formed when the block ratio f is large as
shown in Figure 7.

In this section, we examine the relative stability of a
flat membrane, a worm–like (cylindrical) micelle and a
spherical micelle. Assuming that the volume fraction of
the block copolymers is sufficiently small, we do not con-
sider any interactions between these aggregates. An in-
verse micelle such that the core is occupied by A blocks
and the corona is formed by B blocks is not considered
since we have assumed a strong repulsive interaction be-
tween B blocks and C homopolymers.

The equilibrium free energy of a flat membrane per
area of a pair of molecules is given from (48) or (51) with
R→∞ by

Fm =
3NBσT

ε∗
· (72)

Suppose that the membrane has a linear dimension L.
Since the number of the pair of molecules is given by
Mp = L2/Σ, the total free energy can be written as

FT
m = FmMp = 3σTL

2. (73)

Next consider the equilibrium free energy for a spherical
micelle. In this case, we may apply the result in Section 4.
In the strong segregation limit, the profile φ′ is approxi-
mated by φ′ = −B for 0 < r < r1, φ′ = A for r1 < r < r2
and φ′ = 0 for r > r2. Hence by using equation (34), one
obtains the long range interaction for an isolated micelle

FL = 4παA2r5
1

c(2c− 3c2/3 + 1)

30
(74)
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where the neutrality condition r3
2 = cr3

1 has been used.
The free energy of a micelle per molecule can be written
as

Fs = Σ1r
3
1gs(c) +Σ2σAC +Σ1σAB (75)

where gs(c) is defined by

gs(c) = αcA2

{
2c− 3c2/3 + 1

30

}
· (76)

In this case, we have Σ1 = 3NB/r1 and Σ2 = 3cNB/r2.
Minimization of Fs with respect to r2 leads to the equilib-
rium free energy

Fs =
3NB

r∗1

(
3

2

)
(c2/3σAC + σAB) (77)

with the equilibrium radius

r∗32 =
c5/3σAC + cσAB

2gs(c)
· (78)

Since the number of molecules in a micelle is given by
n = 4πr2

1/Σ1 = 4πr3
1/(3NB) and the number of the mi-

celles must be equal to 2Mp/n, one obtains the total free
energy of spherical micelles

FT
s = 3σTL

2χs (79)

where

χs =

(
3w∗

2c2/3r∗2

)
c2/3σAC + σAB

σT
(80)

with w∗ the equilibrium width of a bilayer membrane.
This factor appears in (80) because we have compared
the free energies by fixing the total number of copolymer
molecules.

The free energy for a worm–like micelle with length L
can be evaluated in a similar manner. The final result is
given by

FT
c = 3σTL

2χc (81)

where

χc =

(
w∗

c1/2r∗2

)
c1/2σAC + σAB

σT
· (82)

The equilibrium radius r∗2 is given for a cylindrical micelle
by

r∗32 =
c2σAC + c3/2σAB

2gc(c)
(83)

with

gc(c) =
αcA2

16
[1− c+ c ln c]. (84)

Comparing (73, 79, 81) we note that a bilayer membrane
has the lowest free energy for f → 0 (c→ 1) and hence it

0.5
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0.50 1
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1.5
F

Fig. 8. Comparison of free energies for a flat bilayer (flat
straight line), a cylindrical micelle (dotted line) and a spherical
micelle (full line) for σAC/σT = 0.
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F

Fig. 9. Comparison of free energies for a flat bilayer (flat
straight line), a cylindrical micelle (dotted line) and a spherical
micelle (full line) for σAC/σT = 0.048.

is energetically most favorable in this limit. The behavior
for large values of f depends crucially on σAC. When σAC

is identically zero, a spherical micelle is found to be most
stable for f → 1 (c → ∞). Figures 8 and 9 compare
the free energies as a function of f for σAC/σT = 0 and
σAC/σT = 0.048 respectively. When σAC exceeds some
critical value given below, neither spherical nor cylindrical
micelles is stable even for f → 1. This can be understood
as follows; note that the number of molecules in a micelle
decreases with increasing f so that the number of micelles
increases. As a result, the total interface area between
A blocks and C homopolymers becomes larger than that
of a flat membrane. In fact, (79, 81) indicate that when
σAC/σT > 0.23 (σAC/σAB > 0.29) a bilayer membrane
is the most stable configuration for the entire block ratio
0 < f < 1.

Finally we make a remark that a similar comparison
with the free energy of a vesicle is not possible in the
present theory since one has no way to determine the equi-
librium radius because of the absence of the spontaneous
curvature.

8 Discussion

We have derived the Helfrich free energy for a bilayer
membrane starting from the field theoretic model for
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copolymer–homopolymer mixtures. The bending and
Gaussian curvature moduli κ and κ̄ have been obtained
with and without the molecular picture.

In the case that a membrane does not have any in-
ternal structures, the neutral surface defined at the mid-
point of the membrane, where there is neither stretching
nor contraction upon bending can be used to investigate
the bending elasticity [30]. However since bilayer mem-
brane studied in this paper consists of A–B–A domains,
the neutral surface is not determined by a simple geomet-
rical argument. The radiusR introduced in (21) is actually
the distance from the center of cylinder to the midplane
of the B domain. This is different from R+ (a− b)/2 with
a−b given by (28), which is the location of the midpoint of
the A–B–A layers. The analysis in Section 5 indicates that
this difference gives rises to the σAC term in the bending
rigidity. What we have shown here is that the membrane
energy can be obtained without specifying the location of
the neutral surface even when the interfacial energy be-
tween C homopolymers and A blocks is finite.

The results for the elastic moduli indicate that the
interfacial energy σAC between the A blocks and C ho-
mopolymers plays an important role for the morphology
of membrane. In the region that σAC is small and f is
around 0.5, κ is positive and κ̄ is negative. This is a neces-
sary condition for a vesicle formation. On the other hand,
in the region where the absolute value of κ is small and
κ̄ is positive a sponge phase is expected to be a favorable
state.

These results may be modified slightly by taking ac-
count of shape fluctuations since they renormalize the elas-
tic rigidities. However, what we have aimed in this paper
is to derive the Helfrich free energy. The main problem
was to find the principle how to make the reduction of
the degrees of freedom arising from the internal structure.
Once the rigidities are obtained as a function of the rele-
vant parameters such as f and σAC, renormalization can
be carried out by the standard method [31–34].

When κ is negative, the Helfrich free energy is not
well-behaved. The higher order gradient terms are neces-
sary. One of the generalization is the following Euclidean
invariant form

Fmem = σ + 2κH2 + κ̄K + β(∇H)2 (85)

provided that β is positive. The gradient ∇ in (85) is de-
fined on a two-dimensional surface. In terms of h intro-
duced in Section 6, we have (∇H)2 = (∇3h)2 up to the
bilinear order. Thus this is a simplest but nontrivial term
to stabilize the short length deformation. The constant β
can, in principle, be evaluated by generalizing the method
given in Section 6. However since the actual calculation is
fairly involved, we do not enter into this problem here.

The relative stability of a bilayer membrane compared
with micelles has been investigated. It has been shown
that the interfacial energy σAC plays again a crucial role
for the morphologies. When σAC is small, micelles are
more stable for large values of the block ratio f while when
σAC is sufficiently large, a bilayer membrane is the domi-
nant morphology for all the values of f . Since these con-
clusions have been obtained by omitting the translational

C

A B

C

Fig. 10. Membrane where the B–blocks constitute spherical
disconnected domains.

entropy of a micelle, the stability limit may be changed
slightly by taking account of the entropy effect. However,
we believe that the property mentioned above is qualita-
tively unaltered. It should also be pointed out that we
have assumed only the stripe domain of A– and B–blocks
in a membrane. When the block ratio f is large, one can-
not exclude, for instance, the possibility of formation of
cylindrical or spherical domains of B-blocks arrayed peri-
odically in a membrane as indicated in Figure 10. However
we do not go into the detail of such an internal domain
morphology in this paper.

In Sections 4 and 5, we have assumed that the num-
ber of the copolymer chains in a bilayer is unchanged
upon bending. This is justified when the deformation of a
membrane is sufficiently weak. Wang [17] has shown that
change of the copolymer number is important when the
block ratio is close to unity where the A–domain is thicker
than the B–domain. As shown in Figure 4, however, a bi-
layer membrane is unstable compared to a micelle when
σAC is small. Nevertheless, the number change cannot be
ignored when the radius of a vesicle is small or σAC is
large. It is remarked that the number change can be in-
corporated into the present theory by removing the condi-
tions (24, 35) and minimizing the free energy with respect
to each domain width.

We are grateful to S. Komura for bringing our attention to ref-
erence [16]. Thanks are also due to T. Kawakatsu for a number
of valuable discussions and due to H. Brand, M. Doi, D. Jasnow
and T. Okuzono for useful conversations. This work was sup-
ported by the Grant-in-Aid of Ministry of Education, Science
and Culture of Japan.

Appendix

Here we describe some details of manipulations used in
the derivations of (29, 39).

First let us consider the case of a cylindrical vesicle in
Section 3. By using (21, 27, 28), one obtains

r4
3 − r

4
2 = 8R3ε+ 8Rε3 (A.1)

and

r4
4 − r

4
1 = c(8R3ε+ 8Rε3). (A.2)

Note that the terms of order of 1/R exactly cancel out
each other and do not exist in (A.2).
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In order to calculate the last term in (20), we use the
relation

cr2
2 − r

2
1 = cr2

3 − r
2
4 =

B

2A
(r2

3 + r2
2) (A.3)

which is readily proved from (14, 24). Therefore one ob-
tains up to O(1/R)

(cr2
2−r

2
1)(cr2

3−r
2
4) ln

r3

r2
=
B2

4A2
(r2

3 +r2
2)2 ln

r3

r2

=
B2

A2

(
2R3ε+

14

3
Rε3+

56

15

ε5

R

)
·

(A.4)

Evaluation of the third term in (20) is mostly involved.
Substituting (21) into it, one obtains after tedious but
elementary calculations

r4
4 ln

r4

r3
+ r4

1 ln
r2

r1
= R3[2ε(c− 1) + a+ b]

+R2

[
7

2
(a2 − b2) + ε(a− b)(7c− 4)

]
+R

[
ε(13c− 6)(a2 + b2)

+ε2(a+ b)(13c2 − 12c+ 2)

+ ε3
(

26

3
c3 − 12c2 + 4c−

2

3

)]
+ε3(a− b)

(
25

3
c3 − 12c2 + 6c−

4

3

)
+

2ε5

R

(
c5

5
−c4+2c3−2c2+c−

1

5

)
·

(A.5)

Using (27, 28) in (A.5) and putting (A.1, A.2, A.4, A.5)
together, one finally obtains the free energy for a cylindrial
vesicle (29).

Next we describe the derivation of (39). Substituting
(21) into the second term of (34), one obtains

1

5

(
1−

B2

A2

)
(r5

3 − r
5
2) = c(2− c)(2R4ε+ 4R2ε3 +

2

5
ε5).

(A.6)

From (30, 35) one notes the relation

r3
4 − r

3
3 = r3

2 − r
3
1 =

c− 1

2
(r3

3 − r
3
2) (A.7)

so that

r2
2(r3

2−r
3
1)+r2

3(r3
4−r

3
3)=

2

3
c(c−1)(3R4ε+4R2ε3+ε5).

(A.8)

Similarly the first term of (34) can be written as

1

5
(r5

1−r
5
4) =−R4(2cε+a+b)+2R3[2cε(b−a)+(b2−a2)]

− 2R2[2c3ε3+3c2ε2(a+b)+3cε(a2+b2)]

+ 4Rc3ε3(b−a)−
2

5
c5ε5. (A.9)

Substituting (37, 38) into (A.9), one obtains, from
(A.6, A.8, A.9), the free energy (39) for a spherical vesicle.
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